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Abstract
We evaluate the free energy of the random cluster model at its critical point
for 0 < q < 4 using an exact result due to Baxter, Temperley and Ashley, and
obtain an explicit expression in the form of an infinite series. It is found that
the resulting series expression assumes a form which depends on whether or
not π/2 cos−1(

√
q/2) is a rational number. As a by-product, our consideration

leads to a closed-form evaluation of the integral

1

4π2

∫ 2π

0
dθ

∫ 2π

0
dφ ln[A + B + C − A cos θ − B cos φ − C cos(θ + φ)]

= −ln(2S) + (2/π)[Ti2(AS) + Ti2(BS) + Ti2(CS)],

which arises in lattice statistics, where A,B,C � 0 and S =
1/

√
AB + BC + CA.

PACS numbers: 02.30.−f, 05.50.+q

The q-state Potts model, proposed in 1954 by Potts [1] as a model of generalized order–disorder
transitions, has remained to this day as one of the most outstanding unsolved problems
in statistical mechanics. While the model was originally proposed for integral q, in 1969
Kasteleyn and Fortuin [2, 3] introduced the notion of a random cluster model which extends
its consideration to arbitrary q. The random cluster model has since played an important role
in numerous other frontiers including lattice statistics, graph theory and combinatorics [3–5].

The solution of the random cluster model is not known for general q. In a remarkable
paper published in 1978, Baxter, Temperley and Ashley [6] used an earlier result due to
Kelland [7] on a 20-vertex model to derive a number of exact results on the random cluster
model including an explicit expression of its free energy at the critical point. Specifically, they
deduced the critical free energy in the form of an infinite series for q > 4 and in the form of a
definite integral for q < 4.

The regime q � 4 is of particular interest as it is the regime in which the random
cluster model exhibits a second-order transition [8] mimicking many order–disorder transitions
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occurring in nature. Hence, it warrants a closer examination and here we explore in this
direction.

We carry out the integration in the Baxter–Temperley–Ashley expression and recast the
solution in the form of a series. We find the resulting series to assume different forms
depending on an analytic property of q, which is perhaps an indicative of a salient nature of
the (yet unknown) general solution. As a by-product, our analysis, when compared with the
known Ising (q = 2) solution, yields a closed-form evaluation of the integral

I (A,B,C) = 1

4π2

∫ 2π

0
dθ

∫ 2π

0
dφ ln[A + B + C − A cos θ − B cos φ − C cos(θ + φ)],

(1)

which arises often in lattice-statistical problems. The integral has not previously been evaluated
except in special cases when it evaluates spanning tree entropies as given in (30) below.

We first describe the random cluster model [2].
Consider a triangular lattice of Ns sites. The partition function of a random cluster model

on the lattice is the graph generating function [2, 3]

ZRC
Ns

(q;K1,K2,K3) =
∑

S

qc(S)(eK1 − 1)�1(S)(eK2 − 1)�2(S)(eK3 − 1)�3(S), (2)

where the summation is over all edge sets S of the triangular lattice, c(S) is the number of
connected clusters in S including isolated points, �α(S) is the number of lines in S in the
direction α = 1, 2, 3 and q is a variable which is an extension of the number of states of the
Potts model. For q = integers, the graph generating function (2) coincides with the partition
function of a q-state Potts model with (reduced) interactions K1,K2,K3 on the same lattice.
One is interested in the evaluation of the per-site ‘free energy’

f RC(q) = lim
Ns→∞

N−1
s ln ZRC

Ns
(q;K1,K2,K3). (3)

The random cluster model is known to be critical at [6, 9, 10]
√

qx1x2x3 + x1x2 + x2x3 + x3x1 = 1, (4)

where

xα = (eKα − 1)/
√

q � 0. (5)

For 0 < q < 4, define φ(q) and vα(q), α = 1, 2, 3, by

cos φ(q) = √
q/2, 0 < φ < π/2,

xα = sin(φ − vα)/ sin vα, 0 < vα < φ,
(6)

and in terms of these variables

eKα = 1 + 1
2 [

√
q(4 − q) cot va − q], 0 < q < 4 (7)

and the critical point (4) becomes

v1 + v2 + v3 = 2φ(q). (8)

Baxter, Temperley and Ashley [6] evaluated the free energy at the critical point (4). For
0 < q < 4, they obtained the expression

f RC
critical(q) = 1

2 ln q + ψ(φ, v1) + ψ(φ, v2) + ψ(φ, v3), (9)

where

ψ(φ, v) = 1

2

∫ ∞

−∞

sinh(π − φ)x sinh 2(φ − v)x

x sinh πx cosh φx
dx, 0 < q < 4. (10)
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The integral (10) can be explicitly evaluated using contour integration by completing a
contour in the upper-half complex z plane. The integrand has poles at

sinh(πz1) = 0 or z1 = ni, n = 1, 2, . . . ,

cosh(φz2) = 0 or z2 = π

2φ
(2m + 1)i, m = 0, 1, 2, . . . ,

and the evaluation of residues depends on whether z1 and z2 overlap. We have the following
two cases:

Case 1. There is no overlapping between z1 and z2, namely, π/2φ is either irrational or

π

2φ
= M

N
, M = 1, 2, 3, . . . , N < M (11)

with N even. Then, both z1, z2 are simple poles and one obtains straightforwardly

ψ(φ, v) =
∞∑

n=1

1

n
tan(nφ) sin 2n(φ − v)

+
∞∑

m=0

2

2m + 1
cot

[(
m +

1

2

)
π2

φ

]
sin

[
(2m + 1)

vπ

φ

]
, (12)

where the two terms come from residues at z1 and z2, respectively.

Case 2. There is overlapping between z1 and z2. This occurs when π/2φ is given by (11) but
with N = odd. The residues now consist of three terms and one has

ψ(φ, v) = R1(φ, v) + R2(φ, v) + R3(φ, v), (13)

where R1 is the residues from simple poles in z1, R2 is the residues from double poles and R3

is the residues from simple poles in z2, if any.
Again, the computation of residues can be carried out. After some algebra and

manipulation, we find the results

R1(φ, v) =
M−1∑
k=1

tan(kφ)

[
sin(2kφ)

∫ π/2k

2v

cos(M − k)x

sin(Mx)
dx

− cos(2kφ)

∫ 2v

0

sin(M − k)x

sin(Mx)
dx

]
,

(14)
R2(φ, v) = 2(−1)p

MNπ
Ti2(tan u) +

(−1)p(N − p)

MN
ln cot u,

R3(φ, v) = −2M

N

(N−1)/2∑
k=1

cot

(
2kMπ

N

) ∫ 2v

0

sin(2kMx/N)

sin(Mx)
dx.

Here, the number u and integer p in R2(φ, v) are given by the parametrization

Mv = pπ/2 + u, with 0 < u < π/2, p = 0, 1, 2, . . . , p < N, (15)

and the function

Ti2(x) =
∫ x

0

tan−1 t

t
dt = x − x3

32
+

x5

52
− x7

72
+ · · · (16)

is the inverse tangent integral function [11].
It is instructive to see how the critical free energy passes from (13) to (12) as q varies

and π/2φ changes from rational to irrational. Indeed, any irrational π/2φ can be reached by
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taking an appropriate M,N → ∞ limit of π/2φ = N/M . In this limit, we have R2 = 0 by
(14). It can be verified that R1 and R3 can be recast into equivalent forms

R1 =
M−1∑
n=1

1

n
tan(nφ) sin[2n(φ − v)] +

M−1∑
n=1

tan(nφ)

[
sin(2nφ)

∫ π/2n

2v

cot(Mx) cos(nx) dx

+ cos(2nφ)

∫ 2v

0
cot(Mx) sin(nx) dx

]
,

(17)

R3 = 2
(N−3)/2∑

m=0

cot

[(
m +

1

2

)
πx

φ

]{
sin[(2m + 1)vπ/φ]

2m + 1

− M

N

∫ 2v

0
cot(Mx) sin

[(
m +

1

2

)
πx

φ

]
dx

}
.

In the large M,N limit, the integrals in (17) vanish. Then, R1 and R3 become the first and
second terms, respectively, and one recovers (12).

For q = 2, we have φ = π/4,M = 2, N = 1. Since N is odd, we combine (13) with (9)
and after some algebra obtain the expression

f RC
critical(2) = 1

2
ln 2 +

3∑
α=1

[
1

2
ln(cot vα) +

1

π
Ti2(cot 2vα)

]
, v1 + v2 + v3 = π/2. (18)

On the other hand, the q = 2 random cluster model is completely equivalent to an Ising
model on the same triangular lattice with anisotropic interactions Kα/2, α = 1, 2, 3. Namely,
we have

Z
Ising
Ns

=
∑

σ=±1

∏
S

e(Kα/2)σiσj

= e−Ns(K1+K2+K3)/2ZRC
N (2). (19)

Also from (7) for q = 2, we have

eKα = cot vα, sinh Kα = cot(2vα). (20)

It follows that the two free energies are related by

f Ising = f RC(2) − 1
2 (K1 + K2 + K3)

= f RC(2) − 1
2 ln[(cot v1)(cot v2)(cot v3)], (21)

a relation which holds for all temperatures.
Now the Ising free energy is known [12] to be

f Ising = ln 2 +
1

8π2

∫ 2π

0

∫ 2π

0
ln[cosh K1 cosh K2 cosh K3 + sinh K1 sinh K2 sinh K3

− sinh K1 cos θ − sinh K2 cos φ − sinh K3 cos(θ + φ)] dθ dφ. (22)

It can be verified that the critical condition (8), or v1 + v2 + v3 = π/2, is equivalent to

cosh K1 cosh K2 cosh K3 + sinh K1 sinh K2 sinh K3 = sinh K1 + sinh K2 + sinh K3, (23)

which can also be written as

ab + bc + ca = 1, (24)

with

a = cot 2v1 = sinh K1, b = cot 2v2 = sinh K2, c = cot 2v3 = sinh K3. (25)
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Thus, at the critical point, the Ising free energy assumes the form

f
Ising
critical = ln 2 + 1

2I (a, b, c), (26)

where a, b, c are subject to (24) and I (a, b, c) defined in (1). Also by combining (18) with
(21), we have

f
Ising
critical = 1

2
ln 2 +

1

π
[Ti2(a) + Ti2(b) + Ti2(c)]. (27)

Equating the last two expressions, we obtain

I (a, b, c) = −ln 2 +
2

π
[Ti2(a) + Ti2(b) + Ti2(c)], ab + bc + ca = 1. (28)

For the integral I (A,B,C) with A,B,C arbitrary, we introduce variables a = AS, b =
BS, c = CS with S = 1/

√
AB + BC + CA, so that (24) holds. Then, one has

I (A,B,C) = −ln S + I (a, b, c)

= −ln(2S) +
2

π
[Ti2(a) + Ti2(b) + Ti2(c)]. (29)

The last line in (29) establishes the integration formula give in the abstract.
It is readily checked that (29) yields the previously known values [13–16]

I (2, 2, 0) = 4

π

(
1 − 1

32
+

1

52
− 1

72
− · · ·

)
,

(30)

I (2, 2, 2) = 6

π
Ti2

(
1√
3

)
+

1

2
ln 3,

which give, respectively, the numbers of spanning trees on large rectangular and triangular
lattices. It is curious that I (2, 2, 2) was first evaluated via the use of a q = 0 random cluster
model [15].

For completeness, we give results for q = 1 (φ = π/3,M = 3, N = 2) and q = 3
(φ = π/6,M = 3, N = 1) obtained by using (9) and (12), and (9) and (13), respectively, as
dictated by the value of N. After some algebra, we find

f RC(1) = K1 + K2 + K3,

f RC
critical(3) = 1

4
ln

(
9

8

)
+

3

2
ln

(
2 +

√
3

2

)
+

3∑
α=1

[
1

6
ln

(√
3 cot vα − 1√
3 tan vα − 1

)

+
1

2
ln(1 +

√
3 cot 2vα) +

2

3π
Ti2(cot 3vα)

]
, v1 + v2 + v3 = π/3. (31)

The q = 1 expression is the same as that computed directly from (2) which holds for all
temperatures.

In summary, we have obtained the free energy (9) of the random cluster model at its
critical point for 0 < q < 4 in the form of a series. The resulting expression is given by (12)
if π/2φ(q) = π/2 cos−1(

√
q/2) is irrational or a rational number with an even denominator,

and is given by (13) if π/2φ is a rational number with an odd integer in the denominator. For
q = 2, our result leads to a closed-form evaluation of the integral I (A,B,C) given by (1) for
general A,B,C. We mention in passing that Bazhanov and Stroganov [17] have considered
the free energy of the free-fermion model [18], which is of the form of a double integral
more general than that of I (A,B,C). They obtained a closed-form expression in terms of
derivatives of Jacobi elliptic functions.
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